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Formation of Two-Dimensional Sand Ripples under Laminar Shear Flow
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The process of ripple formation on a two-dimensional sand bed sheared by a viscous fluid is
investigated theoretically. The sand transport is described taking into account both the local bed shear
stress (which is deduced from the resolution of the flow over a 2D deformed bed) and the local bed slope,
via a simple nonlinear law. Within this model, a 2D linear stability analysis reveals that the most unstable
mode is a longitudinal mode (i.e., it corresponds to sand ripples with a crest perpendicular to the flow).
Most importantly, oblique modes are found to be unstable also and can couple to the most unstable mode
in the nonlinear regime. We show through a weakly nonlinear analysis that this coupling gives birth to
complex 2D steady sand patterns drifting along the flow at constant speed.
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When a planar sand bed is sheared by a fluid, it becomes
unstable and gives rise to bedform patterns. The descrip-
tion of sand patterns formed by the flow of wind or water
still poses a great challenge to the community. Up to now,
most theoretical works dealt with the linear stability analy-
sis of a unidimensional sand bed [1–5], but very few
investigated the formation of 2D sand patterns. We can
cite the theoretical work of Vittori and Blondeaux [6] and
the experimental studies and modeling of the Danish group
[7,8]. These works pertain to the case of oscillating flows,
but no one has investigated the stability of the 2D sand bed
under a continuous shear flow. In nature, however, complex
2D sand patterns can be observed under a steady and
continuous flow as, for example, on sandy river beds [9].
In this Letter, we present a theoretical study on the for-
mation of 2D sand bed patterns under a laminar and steady
shear flow. Several issues are addressed here: (i) Is the 2D
linearly most unstable mode longitudinal (i.e., correspond-
ing to ripples with a crest perpendicular to the flow direc-
tion)? (ii) What is the subsequent evolution of the sand
bed? Does it remain invariant in the direction perpendicu-
lar to the flow or does it exhibit transverse instabilities
giving rise to complex 2D patterns?

Our analysis is based on a classical description of sand
transport. The rate of sand transport is evaluated as a
function of both the local bed shear stress (which is derived
from the resolution of the flow over a deformed sand
surface) and the local bed slope, using a standard semi-
empirical law [10]. The evolution of the sand bed is then
deduced via the mass conservation of sand grains. We first
investigated the linear stability of such a 2D sand bed and
derived an explicit expression for the growth rate of the
unstable modes as a function of the physical parameters of
the system (i.e., the shear rate �, the fluid viscosity �, the
grain diameter d, etc.). We found that the most unstable
mode is longitudinal and therefore corresponds to sand
ripples with a crest perpendicular to the flow direction.
Most importantly, oblique modes are found to be unstable
also and can couple in a resonant way to the most unstable
mode in the nonlinear regime. In particular, we show that
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the nonlinear coupling of a resonant triad composed of one
longitudinal mode and two symmetric oblique modes gives
birth to a rich variety of 2D steady bedforms, such as brick
or hexagonal patterns [11]. This last result contrasts with
what is observed experimentally for a quasi-1D sand bed
[12,13] where the ripple pattern does not reach a steady
state but exhibits a coarsening process.

We consider a Newtonian and viscous fluid flowing over
a sand surface described by its height h�x; y; t�. The flow is
unidirectional along the x direction and has a thickness L.
We choose a Couette flow configuration; that is, the verti-
cal velocity profile is linear (in the case of a flat sand bed)
and the shear rate � is imposed. The equations of motion
for the fluid read�


 @u@t � 
�u � r�u � �rp� r2u;
r � u � 0;

(1)

u � �u; v; w� being the fluid velocity, p the pressure, 
 the
volumetric mass of the fluid, and  its dynamic viscosity
(� � =
 being the kinematic viscosity). These equations
are supplemented with the following boundary conditions:
u � 0 at the bed surface and u � ��L; 0; 0� at the height
z � L.

The transport of sediment is induced by the bed shear
stress � (i.e., the flow shear stress calculated at the sand
surface), but its precise evaluation is not a simple matter
since it involves intricate and complex processes such as
grain-grain and fluid-grain interactions. Up to now, there
is no sound theoretical description for the transport of
particles. Therefore, we use a generic law inspired from
those established empirically for a one-dimensional sand
bed [10].

Let us first introduce a dimensionless bed shear stress
vector defined by � � �


g�s�1�d , where s � 
g=
 is the
relative density of the sediment compared to that of the
fluid, � the bed shear stress, g the gravitational accelera-
tion, and d the diameter of the grains. The modulus of this
dimensionless vector is referred to as the Shields number.
The horizontal mass transport rate [q � �qx; qy�] is as-
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sumed to obey the following law:

q � qb

"������h �
�c0

�s
rh

�������c0

#
m �h �

�c0
�s

rh

k�h �
�c0
�s

rhk
; (2)

where qb � c
�����������������������
�s� 1�gd3

p
(c is a numerical constant), �h

is the horizontal projection of the dimensionless bed shear
stress, �c0 is the critical value of the Shields number to set
grains into motion on a flat horizontal sand bed, and �s is
the internal friction coefficient of the material. The expo-
nent m is chosen to be equal to 3=2 as in the Meyer-Peter
law [10]. Note also that the term raised to the powermmust
be positive or zero. If this term is negative, the sand
transport is not possible and is therefore reduced to zero.
Equation (2) is a 2D version of the standard transport laws
established for a one-dimensional sand bed. It is composed
of two terms, one evaluating the rate of sand transport and
the other giving its direction in the horizontal plane. The
rate of sand transport results from the competition between
the different forces acting on the grains from the bed
surface [10]: the drag force (proportional to the bed shear
stress), the gravitational force, and the friction force be-
tween the moving grains and the static bed (estimated by
the Coulomb law). For a flat bed (i.e., rh � 0), the sand
transport rate is simply a function of the Shields number
reduced by the critical Shields number (k�hk ��c0).
When the bed is tilted downstream (upstream), the sand
transport rate is clearly increased (decreased). This bed
slope effect is taken into account by the presence of the
term proportional to rh. The second term, which indicates
the local direction of grain motion, is simply given by the
sum of the driving forces (drag force plus gravity).

Finally, the model is closed by the mass conservation
equation for the grains:

@h
@t

� �r � q: (3)

The trivial stationary solution of these model equations
corresponds to a simple linear shear flow over a flat hori-
zontal sand bed. The velocity profile is therefore given by

u0�z���z and the transport rate by jq0j�c
����������������������
�s�1�gd3

p



��0��c0�
m, where �0 � ��=�g�s� 1�d� is the Shields

number in the case of a flat bed.
In the next development, we use the classical hypothesis

of quasistationarity; that is, the typical hydrodynamical
time is much smaller than the typical morphological
time. The hydrodynamic equations are therefore solved
over a fixed sand bed surface.

In order to study the linear stability of the planar sand
bed, we assume that the sand surface presents a perturba-
tion of small amplitude, h�x; y; t� � h1ei�kxx�kyy��!t, where
k � kxex � kyey is the wave vector of the perturbation,
and ! its growth rate. We first have to calculate the flow
perturbation, the bed surface being kept fixed. The per-
turbed flow quantities can be written as
24800
�u; v; w; p� � �u0; 0; 0; p0�

� �U1; V1; W1; P1�e
i�kxx�kyy��!t: (4)

Keeping only the linear terms in the hydrodynamic equa-
tions, we get the following coupled equations for U1, V1,
W1, and P1:

ikx�zU1 � �W1 � ikx
P1



� ��@2z � k2x � k2y�U1; (5)

ikx�zV1 � iky
P1



� ��@2z � k

2
x � k

2
y�V1; (6)

ikx�zW1 �
1



@zP1 � ��@2z � k

2
x � k

2
y�W1; (7)

ikxU1 � ikyV1 � @zW1 � 0; (8)

with the following boundary conditions:

z � 0: U1 � ��h1; V1 � 0; W1 � 0;

z � L: U1 � 0; V1 � 0; W1 � 0:
(9)

Combining Eqs. (5)–(8) gives a closed equation for W1:

���@2z � k2� � ikx�z��@2zW1 � k2W1� � 0; (10)

whose solution can be expressed in terms of the Airy
functions Ai and Bi as

W1�z� � a1ekz � b1e�kz �
ekz

2k



Z z

0
d%e�k% �a2Ai�%

0� � b2Bi�%
0�� �

e�kz

2k



Z z

0
d%ek% �a2Ai�%

0� � b2Bi�%
0��; (11)

where ai and bi are integration constants, k �
����������������
k2x � k2y

q
,

and % 0 � ei&=6�kxlv�
�2=3�kx% � ik

2l2��. We recall that l� ����������
�=�

p
is the viscous length. In the same way,U1 and V1 can

also be calculated analytically and expressed in terms of
the Airy functions and W1. For the sake of brevity, we do
not give their explicit expressions here.

We are now in position to calculate the perturbed bed
shear stress �1 (� � �0 � �1e

i�kxx�kyy��!t). In order to
simplify further calculations, we focus on the situation
where the width L of the flow is much greater than the
dimensions of the bed perturbation. In this case, one can
obtain approximate analytical expressions for �1. In par-
ticular, in the long wavelength limit (i.e., kl� � 1), we get

�1x

�0h1
� ei&=6l�2=3

� k1=3x
1:07k2x � 0:73k2y

k2x � k
2
y

�O�klv�; (12)

�1y

�0h1
� 0:34ei&=6l�2=3

�
k4=3x ky
k2x � k2y

�O�klv�; (13)

where �0 � �.
The growth rate of the bed perturbation can easily be

derived by linearizing the transport law [Eq. (2)] and using
mass conservation Eq. (3). We get
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; (14)

where we introduced the parameter � � ��0 ��c0�=�c0
which is referred to as the relative shear stress excess.
Equation (14) consists of two terms: the first one (the
second one) involves the bed shear stress in the x direction
(in the y direction). Referring to expressions (12) and (13),
we note that �1x plays a destabilizing role, whereas �1y

stabilizes the sand bed for small k. As can be seen in Fig. 1
where we plotted the marginal stability curve for different
values of �, pure longitudinal modes are unstable at small
k while pure transverse modes are stable. At larger k, the
longitudinal modes are stabilized by the gravitational ef-
fect (terms proportional to kx=�s), as found in the 1D
stability analysis fully detailed in [5,14]. Indeed, the gravi-
tational effect enhances (lowers) the critical Shields num-
ber for the onset of grain motion on upward slopes (on
downward slopes); this prevails for large slopes (i.e., for
large k) and tends to smooth the sand bed surface. The most
dangerous mode is found to be longitudinal (i.e., ky � 0)
and therefore corresponds to sand ripples invariant in the
direction perpendicular to the flow. This is the same result
as found by Roos and Blondeaux [11] with an oscillatory
flow. This finding seems rather consistent with the experi-
mental observations made for unidirectional flows in a
wide channel: the structures appearing at the first stages
of the instability have crests perpendicular to the flow,
before bifurcating to more complex patterns [15]. The
wavelength of the most dangerous mode can easily be
calculated, and one finds )max � 30l�=�

3=2
s �1���3=2.

Perhaps, the most interesting result is the existence of
unstable oblique modes. Although these modes are not
expected to prevail in the linear regime (since their growth
rate is smaller than that of the most dangerous mode), we
may wonder whether they play an important role in the
nonlinear regime. Could they, for example, couple to a
longitudinal mode in a resonant way and enter the dynam-
ics of the sand surface? In that case what kind of 2D sand
patterns can be expected?

To solve these issues, we performed a weakly nonlinear
analysis. We focused on the nonlinear interaction of three
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FIG. 1. Marginal stability curves for different values of �.
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components of the sand bed perturbation, each character-
ized by a wave vector ki (i � 1; 2; 3) and hence propor-
tional to eiki�r. The interaction of these perturbation
components is particularly strong when adding two of the
wave vectors gives the third one: k1 � k2 � k3. We study
here the superposition of one longitudinal mode and two
symmetrical oblique modes, of respective wave vectors
k1 � kxex, k2 �

1
2 kxex � kyey, k3 �

1
2 kxex � kyey. Let

us therefore consider the following structure for the sand
bed surface perturbation:

h�x; y� � "�A1eik1�r � A2eik2�r � A3eik3�r � c:c:�

� "2�B1eik1�r � B2eik2�r � B3eik3�r � c:c:

� terms proportional to e2k1�r; e2k2�r; . . .�

�O�"3�; (15)

where " is a small parameter defined as !�ki� � -i"
(where -i are coefficients close to unity). The further
analysis is, indeed, performed in the vicinity of the mar-
ginal stability region [i.e., the wave vectors ki are chosen
sufficiently close to the marginal stability curve where
!�k� � 0]. The principle of the nonlinear analysis is to
expand all variables of the problem in power of the small
parameter " and to solve successively at each order. The
interesting result comes to order "2 where we get three
nonlinear coupled equations for the complex amplitudes
A1, A2, and A3 [6]:

_A 1 � !1A1 � K1A2A3; (16)

_A 2 � !2A2 � K2A1A�
3; (17)

_A 3 � !3A3 � K3A1A�
2: (18)

The coupling coefficients K1, K2, and K3 can be calculated
analytically. We find

K1 � �
3i
4
kx�

3=2
c0 �

�1=2
�
�1���2

/2/3
�2

0

� ikx
�1���
�s

/2
�0

�
k2x
4�2

s

�
; (19)

K2;3 � �
3i
8
kx�

3=2
c0 �

�1=2
�
�1���2

/1/
�
3;2

�2
0

�
k2x
2�2

s

� i�1���
kx
�s

	/�3;2
�0

�
/1
2�0


�
: (20)

We introduced the notations!i � !�ki� and /i � �1x�ki�.
Because of symmetry, /2 � /3 and !2 � !3 so that equa-
tions for A2 and A3 are identical. Introducing the real
amplitude and the phase of the perturbations, Ai �
aiei0i , we can deduce real equations. There is a plethora
of possibilities, but we limit ourselves to a typical situation
where a2 � a3 and 02 � 03. In this case, the system
reduces to coupled equations for a1, a2, and the phase shift
�0 � 202 �01:

_a 1 � Re�!1�a1 � 11a22; (21)
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FIG. 2. Amplitudes a1 and a2 and phase shift �0 correspond-
ing to steady state solutions as a function ky for a fixed value of
kx. The continuous parts of the curves indicate the region where
the solutions are stable with respect to fluctuations of amplitudes
and phases. Parameters: kxlv � 0:1 and � � 0:1.
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_a 2 � Re�!2�a2 � 12a1a2; (22)

� _0 � Im�2!2 �!1� �

�
2Re�K2�a1 � Re�K1�

a22
a1

�


 sin��0� �
�
2 Im�K2�a1 � Im�K1�

a22
a1

�
cos��0�

(23)

with 1i � Re�Ki� cos��0� � ��1�i Im�Ki� sin��0� (i �
1; 2). When the amplitudes ai are sufficiently small, the
linear terms dominate and the modes grow or decay ex-
ponentially depending on the sign of the growth rate. The
nonlinear terms enhance or saturate the exponential growth
according to the sign of the coupling coefficients 11 and
12, which depends in a complicated way on the chosen
modes and on their relative phase �0. If 11 or 12 is
positive, a1 or a2 will have an explosive growth (i.e., faster
than an exponential one) and our nonlinear analysis will
break down. On the other hand, if 11 and 12 are both
negative, we can expect a 2D steady pattern to form.
These steady patterns correspond to the stationary solu-
tions of Eqs. (21)–(23) (i.e., _a1 � _a2 � � _0 � 0). We
have determined the domain of existence of these solutions
in the parameter space ��;k� and have found that in the
unstable region [i.e., where !�k� is positive], there always
exist such stationary solutions. We present in Fig. 2 typical
evolutions of a1, a2, and �0 as a function of ky for fixed
FIG. 3. Examples of bedforms: left �0 � &=2, kx=ky � 4,
a1 � a2 (brick pattern); right �0 � 2&=3, kx=ky � 2, a1 �
a2=2 (hexagonal pattern).
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values of kx and �. It should be noted that the range of
variation of ky is restricted to the unstable domain. Figure 3
gives examples of ripple patterns obtained for different
values of the ratio kx=ky and the phase shift �0. These
patterns drift along the flow direction at a constant speed
vd given by vd � _01=kx.

In summary, we have shown, using a model based on the
resolution of the flow over a 2D deformed sand bed
coupled to a law for sand transport, the existence of 2D
stationary ripples patterns. They result from the nonlinear
coupling of a resonant triad of perturbation modes. We
considered here the simple situation of a triad composed of
one longitudinal mode and two symmetrical oblique
modes, and found that the sand bed surface can exhibit a
large variety of 2D structures depending on the wave num-
bers and phase shift of the different modes. However, an
important issue remain to be addressed: What is the final
2D pattern selected by the system for a given shear rate? To
answer this question, a full numerical nonlinear analysis is
needed. Parallel to this, it would also be highly desirable to
conduct experiments on sand ripples in large channels. At
last, we may wonder how our results could be applied to
natural flows that are generally turbulent. In turbulent flow
configurations, our analysis, of course, breaks down; how-
ever, one may expect the mechanisms leading to 2D sand
patterns to be similar in laminar and turbulent flows be-
cause the origin of sand bed instability has nothing to do
with the turbulent feature of a flow.
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